

NOVEMBER 4, 2020

EV Infrastructure Research

Looking Ahead

Dr. Alex Brissette, US Research Center (USRC)

EV fast charging and global standardization

ABB leading in major developments this decade

Public and commercial car charging

Range of EVSE offering

Public and commercial EV Charging			
AC destination	DC destination	DC Fast	DC High Power
3-22 kW	20-25 kW	50 kW	150 to 350 kW+
4-16 hours	1-3 hours	20-90 min	10-20 min
 Office, workplace Home Multi family housing Hotel and hospitality Overnight fleet Supplement at DC charging sites for PHEVs 	 Office, workplace Hotel and hospitality Dealerships Parking structures Urban fleets Public or private campus Sensitive grid applications 	 Retail, grocery, mall, big box, restaurant High turnover parking Convenience fueling stations Highway truck stops and travel plazas OEM R&D 	 Highway corridor travel Metro 'charge and go' Gas station areas City ring service stations OEM R&D

Impact of Electric Vehicles for our Society

ABB Contributions

Public transit electrification

- Charging stations
 - Depots ٠
- "Pantograph" opportunity charging ٠
- Projects primarily in Europe

Complete Charging Site Solutions

Electrification and management

- Complete depot site may have:
 - EVSEs
 - DERs (PV, battery, etc)
 - Electrical protection panels
 - SCADA system
 - System management solutions (energy optimization, asset health monitoring, etc)
 - Cloud connection to charge point operator back office
- Solutions for:
 - Private EV fleets
 - Public fast charging depots
 - Destination charging sites add building management system

Load Management

What are the motivations to manage load?

Interconnection Limits

- Existing or additional loads exceed ratings for interconnection equipment
- Protection
- Transformer
- Adding EV charging fleet to a site poses this risk

Going Green

- Altruistic desire to use more renewable energy
- Manage load to align with PV output
- Install storage
- More likely for residential customers

Reduce Energy Bill

- Load dynamics affect utility operation
- Utility can apply incentives and disincentives to customer bill to influence load dynamics
- Load management is an economics problem for the customer, connected with utility rate cases and programs

EV Load Management

What is the industry direction? Two perspectives

Depot/Site-Level Load Management

- Depot owner cost minimization:
 - DERs
 - Control costs against utility rate cases/programs
 - Direct control of EVs depends on ownership private fleet depots vs. public charging

摄

- Challenges for distribution utilities:
 - Forecasting EV load, especially at public fast charging depots
 - Handling load dynamics (behavior at different time scales)
 - Mitigation using price-based incentives and disincentives
 - Time-varying pricing
 - Demand charges
 - Demand response
 - Mitigation by leveraging customer relationships (e.g. fleet owners)

Network-Aggregated EV Load Management

- Players and roles still being defined: will aggregated EV load control be offered as a service to utilities, and by whom?
- Charge point operators
- EV vendors
- Utilities
- How can utilities distribute price signals to aggregators to help control impact **across the network**?
 - Congestion
 - Voltage profile
- Rich area for advanced research

EV Load Management

Common approach for sites

- Site makes best decisions for itself based on utility price structures
- EV charging control
- V2G
- DER control
- Building load control (HVAC, lighting, etc)
- Aggregator services simplify site owner decisions
- Provide intelligent control platform
- Handle utility signals
- Possibly own assets (DERs, EVSEs)
- Aggregator business models an open question
- **Coordinated intelligence** guarantees best outcomes for site owners
- Avoid management silos (e.g. HVAC vs. DER vs. EVs)
- Continue to develop communication and data model standards (e.g. IEEE 2030.5)

- How to determine the real cost of energy delivery, including e.g. GHG reduction by incentivizing EVs?
 - Time-varying rates (Time of use, critical peak pricing, etc)
 - Penalties for extreme behavior (e.g. demand charges)
 - Incentives for services (e.g. capacity, voltage/frequency support)
- Should only be interested in and bill for behavior of site at interconnection point
- Utility has no visibility beyond interconnection
- Continue to develop communication standards for utility pricing and programs (e.g. **OpenADR**)
- Mutually beneficial, novel methods of coordination is a valuable research area

EV Load Management

What is the future of V2G?

Possible applications:

- Bulk energy management, e.g. peak shaving/load shifting
- Is there enough available stored energy to make a difference?
- May be feasible for large fleets
- Resilience/backup power
 - For residential, EV capacity may cover a few hours' outage acceptable to resident?
- For buildings with fleets, critical loads could stay online
- Fast response energy management with proper incentives,
 low energy/high power V2G works well for certain applications
- Frequency response ancillary service
- Renewable smoothing
- Best outcomes come from stacking value propositions pilot opportunities can help explore possibilities

Other considerations:

- Impact on battery lifetime how to compensate?
- For aggregators, is the extra responsibility worth the benefit?
- If EV vendor is an aggregator, easier to structure warranty/EULA to access stored capacity
- Research opportunities for exploring novel partnerships

PV smoothing using EV

